10 Example programs

�This chapter contains example programs written in OPL. The programs are not intended to demonstrate all the features of OPL, but they should give you a few hints. To find out more about a particular command or function, refer to the ‘Alphabetic Listing’ chapter.

There are some other example programs in the ‘Advanced Topics’ chapter.

When you’re typing in

You can type procedures in all uppercase, all lowercase or any mixture of the two. Be careful with character codes, though - %A is different to %a.

When there is more than one command or function on a line, separate each one with a space and colon - for example:

CLS :PRINT “hello” :GET

However, the colon is optional before a REM statement for example:

CLS REM Clears the screen

and

CLS :REM Clears the screen

are both OK.

Put a space between a command and the arguments which follow it - for example PRINT a$. But don’t put a space between a function and the arguments in brackets - for example CHR$(16).

It doesn’t matter how many spaces or tabs you have at the beginning of a line.

Errors

The following programs do not include full error handling code. This means that they are shorter and easier to understand, but may fail if, for example, you enter the wrong type of input to a variable.

If you want to develop other programs from these example programs, it is recommended that you add some error handling code to them. See the ‘Error Handling’ chapter for further details.

Countdown Timer

(For the Series 5:

PROC timer:

LOCAL min&,sec&,secs&,i%

sec&=1

dINIT “Countdown timer”

dLONG min&,“Minutes”,0,59

dLONG sec&,“Seconds”,0,59

dBUTTONS “Cancel”,-27,“Start”,%s

IF DIALOG=%s

FONT 12,16

secs&=sec&+60*min&

WHILE secs&

PAUSE -20 					REM a key gets us out

IF KEY

RETURN

ENDIF

secs&=secs&-1

AT 20,6 :PRINT NUM$(secs&/60,-2);“m”

AT 24,6 :PRINT NUM$(mod&:(secs&,int(60)),-2);“s”

ENDWH

DO

BEEP 5,300

PAUSE 10

IF KEY :BREAK :ENDIF

i%=i%+1

UNTIL i%=10

ENDIF

ENDP

PROC mod&:(a&,b&)

REM modulo function

REM computes (a&)mod(b&)

RETURN a&-(a&/b&)*b&

ENDP

(For the Series 3c and Siena:

PROC timer:

LOCAL min&,sec&,secs&,i%

CACHE 2000,2000

sec&=1

dINIT “Countdown timer”

dLONG min&,”Minutes”,0,59

dLONG sec&,”Seconds”,0,59

dBUTTONS “Cancel”,-27,”Start”,13

IF DIALOG=13

STATUSWIN ON

FONT 11,16

secs&=sec&+60*min&

WHILE secs&

PAUSE -20 					REM a key gets us out

IF KEY

RETURN

ENDIF

secs&=secs&-1

AT 20,6 :PRINT NUM$(secs&/60,-2);”m”

AT 24,6 :PRINT NUM$(mod&:(secs&,int(60)),-2);”s”

ENDWH

DO

BEEP 5,300

PAUSE 10

IF KEY :BREAK :ENDIF

i%=i%+1

UNTIL i%=10

ENDIF

ENDP

PROC mod&:(a&,b&)

REM modulo function

REM computes (a&)mod(b&)

RETURN a&-(a&/b&)*b&

ENDP

Dice

When the program is run, a message is displayed saying that the dice is rolling. You then press a key to stop it. A random number from one to six is displayed and you choose whether to roll again or not.

PROC dice:

LOCAL dice%

DO

CLS :PRINT “DICE ROLLING:”

AT 1,3 :PRINT “Press a key to stop”

DO

dice%=(RND*6+1)

AT 1,2 :PRINT dice%

UNTIL KEY

BEEP 5,300

dINIT “Roll again?”

dBUTTONS “No”,%N,“Yes”,%Y

UNTIL DIALOG<>%y

ENDP

Random numbers� XE "random numbers" �

In this example, the RND� XE "RND" � function returns a random floating-point number, between 0 and 0.9999999... It is then multiplied by 6, and 1 is added, to give a number from 1 to 6.9999999... This is rounded down to a whole number (from 1 to 6) by assigning to the integer dice%.

Birthdays

This procedure finds out on which day of the week people were born.

PROC Birthday:

LOCAL day&,month&,year&,DayInWk%

DO

dINIT

dTEXT “”,“Enter your date of birth”,2

dTEXT “”,“Use numbers, eg 23 12 1963”,$202

dLONG day&,“Day”,1,31

dLONG month&,“Month”,1,12

dLONG year&,“Year”,1900,2155

IF DIALOG=0

BREAK

ENDIF

DayInWk%=DOW(day&,month&,year&)

CLS :PRINT DAYNAME$(DayInWk%),day&,month&,year&

dINIT “Again?”

dBUTTONS “No”,%N,“Yes”,%Y

UNTIL DIALOG<>%y

ENDP

The DOW function works out what day of the week, from 1 to 7, a date is. The DAYNAME$ function then converts this to MON, TUE and so on. MON is 1 and SUN is 7.

Data files

The following module works on a data file called DATA, containing names, addresses, post codes and telephone numbers. It assumes this file has already been created with a statement like this:

CREATE “DATA”,A,nm$,ad1$,ad2$,ad3$,ad4$,tel$

(To use a database created with the Data application, see the ‘Series 5 Database Handling’ chapter.

(To use the DATA file which the Database application uses, you need to open “\DAT\DATA.DBF”.

The first procedure is the controlling, calling procedure, offering you choices. The next two let you add or edit records.

PROC files:

GLOBAL nm$(255),ad1$(255),ad2$(255)

GLOBAL ad3$(255),ad4$(255),tel$(255),title$(30)

LOCAL g%

OPEN “DATA”,A,nm$,ad1$,ad2$,ad3$,ad4$,tel$

DO

CLS

dINIT “Select action”

REM !!Swap prompt and body in dTEXT for Series 3c and Siena!!

dTEXT “Add new record”,“”,$402

dTEXT “Find and edit a record”,“”,$402

g%=DIALOG

IF g%=2

add:

ELSEIF g%=3

edit:

ENDIF

UNTIL g%=0

CLOSE

ENDP

PROC add:

nm$=“” :ad1$=“” :ad2$=“”

ad3$=“” :ad4$=“” :tel$=“”

title$=“Enter a new record”

IF showd%:

APPEND

ENDIF

ENDP

PROC edit:

LOCAL search$(30),p%

dINIT “Find and edit a record”

dEDIT search$,“Search string”,15

IF DIALOG

FIRST

IF FIND(“*”+search$+“*”)=0

ALERT(“No matching records”)

RETURN

ENDIF

DO

nm$=A.nm$:ad1$=A.ad1$:ad2$=A.ad2$

ad3$=A.ad3$:ad4$=A.ad4$:tel$=A.tel$

title$=“Edit matching record”

IF showd%:

UPDATE :BREAK

ELSE

NEXT

ENDIF

FIND(“*”+search$+“*”)

IF EOF

ALERT(“No more matching records”)

BREAK

ENDIF

UNTIL 0

ENDIF

ENDP

PROC showd%:

LOCAL ret%

dINIT title$

dEDIT nm$,“Name”,25

dEDIT ad1$,“Street”,25

dEDIT ad2$,“Town”,25

dEDIT ad3$,“County”,25

dEDIT ad4$,“Postcode”,25

dEDIT tel$,“Phone”,25

ret%=DIALOG

IF ret%

A.nm$=nm$:A.ad1$=ad1$:A.ad2$=ad2$

A.ad3$=ad3$:A.ad4$=ad4$:A.tel$=tel$

ENDIF

RETURN ret%

ENDP

Re-order� XE "ordering a data file" �� XE "sorting a data file" �

When you use the Data application and enter or change an entry, it goes to the end of the database file. However, if, in your address book, each entry begins with a person’s second name - for example, Tate, Hazel - you can use this program to re-order all of the entries. This doesn’t change the way you find an entry, but after running it you can step through it like a paper address book, or print it out neatly ordered.� XE "printing:a data file" �

This procedure can be used as required for any data file in internal memory or on memory disk for the Series 5 or on Ram SSDs for the Series 3c. For the Series 3c, note that if used on a data file held on a Flash SSD it would use up disk space each time you run it. The dialog it shows is set to show data files used by Data.

You can adapt this procedure to sort other types of data files in other ways.

�	Note that on the Series 5, this would be better done with the more advanced features available in the Database OPX. See the ‘Using OPXs on the Series 5’ chapter for more details of this. You could also use restriction of files by UID in the dFILE keyword to restrict to databases only.

PROC reorder:

LOCAL last%,e$(255),e%,lpos%,n$(255),c%

n$=“\dat*.dbf”

dINIT “Re-order Data file”

dFILE n$,”Filename”,0

IF DIALOG					REM returns 0 if cancelled

OPEN n$,a,a$

LAST :last%=POS

IF COUNT>0

WHILE last%<>0

POSITION last% :e%=POS

e$=UPPER$(a.a$)

DO

IF UPPER$(a.a$)<e$

e$=UPPER$(a.a$) :e%=POS

ENDIF

lpos%=POS :BACK

UNTIL pos=1 and lpos%=1

POSITION e%

PRINT e$

UPDATE :last%=last%-1

ENDWH

ENDIF

CLOSE

ENDIF

GET

ENDP

If you try to reorder a file which is already open (i.e. shown in bold on the System screen) you will see a ‘‘File’ is in use’� XE "'File is in use'" � (‘File or device in use’ on the Series 3c) error. You should .close the file and then try again.

Stopwatch� XE "stopwatch" �

Here is a simple stopwatch with lap times. Note that the Psion switches off automatically after a time if no keys are pressed; you may want to disable this feature (from the Control Panel in the System screen on the Series 5 or with the ‘Auto switch off’ option in the System screen on the Series 3c) before running this program.

Each timing is only accurate to within one second, as the procedure is based on the SECOND function.

PROC watch:

LOCAL k%,s%,se%,mi%

FONT 11,16

AT 20,1 :PRINT “Stopwatch”

AT 15,11 :PRINT “Press a key to start”

GET

DO

CLS :mi%=0 :se%=0 :s%=SECOND

AT 15,11 :PRINT “ S=Stop, L=Lap ”

loop::

k%=KEY AND $ffdf 				REM ensures upper case

IF k%=%S

GOTO pause::

ENDIF

IF k%=%L

AT 20,6 :PRINT “Lap: ”;mi%;“:”;

IF se%<10 :PRINT “0”; :ENDIF

PRINT se%;“ ”;

ENDIF

IF SECOND<>s%

s%=SECOND :se%=se%+1

IF se%=60 :se%=0 :mi%=mi%+1 :ENDIF

AT 17,8

PRINT “Mins”,mi%,“Secs”,

IF se%<10 :PRINT “0”; :ENDIF

PRINT se%;“ ”;

ENDIF

GOTO loop::

pause::

mINIT

mCARD “Watch”,“Restart”,%r,“Zero”,%z,“Exit”,%x

k%=MENU

IF k%=%r

GOTO loop::

ENDIF

UNTIL k%<>%z

ENDP

Inserting a new line in a database

If you insert a new label in a database, the entries will no longer match up with the labels. Rather than using the ‘Update’ option on every entry, to insert a suitable blank line in each one, you can use this program to do this for the entire data file.

The Data application allows you to use as many lines (fields) as you want in an entry (record); OPL can only access 32 fields. This program only lets you insert a new field in the first 16 fields, although you can adapt the program simply to check up to 31 fields.

If, in Data, you enter a line longer than 255 characters, it is stored as two fields, with a character of code 20 at the start of the second field. This program correctly handles any such fields.

The program checks that the 17th field is blank, as it will be overwritten by what was the 16th field. If a long entry has a 17th field, and it contains text, the program skips this entry. The rest of longer entries - even if there are more than 32 fields will be unchanged.

If you insert a new field at a position below the last label, Data will not show it, even when using ‘Update’.

The maximum record length in OPL is 1022 characters. The OPEN command will display a ‘Record too large’ error if the file contains a record longer than this.

PROC label:

LOCAL a%,b%,c%,d%,s$(128),s&,i$(17,255)

s$=“\dat*.dbf”

dINIT “Insert new field”

dFILE s$,“Data file”,0

dLONG s&,“Break at line (1-16)”,1,16

IF DIALOG

OPEN s$,A,a$,b$,c$,d$,e$,f$,g$,h$,i$,j$,k$,l$,m$,n$,o$,p$,q$

c%=COUNT :a%=1

WHILE a%<=c%

AT 1,1 :PRINT “Entry”,a%,”of”,c%,

IF A.q$=“”			REM Entry (hopefully) not too long

i$(1)=A.a$:i$(2)=A.b$:i$(3)=A.c$:i$(4)=A.d$

i$(5)=A.e$:i$(6)=A.f$:i$(7)=A.g$:i$(8)=A.h$

i$(9)=A.i$:i$(10)=A.j$:i$(11)=A.k$:i$(12)=A.l$

i$(13)=A.m$:i$(14)=A.n$:i$(15)=A.o$:i$(16)=A.p$

d%=0 :b%=0

WHILE d%<s&+b%		REM find field to break at

d%=d%+1

IF LEFT$(i$(d%),1)=CHR$(20)		REM line>255...

b%=b%+1			REM ...so it’s 2 fields

ENDIF

ENDWH

b%=17

WHILE b%>d%			REM copy the fields down

i$(b%)=i$(b%-1) :b%=b%-1

ENDWH

i$(d%)=“”			REM and make an empty field

A.a$=i$(1) :A.b$=i$(2) :A.c$=i$(3) :A.d$=i$(4)

A.e$=i$(5) :A.f$=i$(6) :A.g$=i$(7) :A.h$=i$(8)

A.i$=i$(9) :A.j$=i$(10) :A.k$=i$(11) :A.l$=i$(12)

A.m$=i$(13) :A.n$=i$(14) :A.o$=i$(15) :A.p$=i$(16)

A.q$=i$(17)

ELSE

PRINT “has too many fields”

PRINT “Press a key...” :GET

ENDIF

UPDATE :FIRST

a%=a%+1

ENDWH :CLOSE

ENDIF

ENDP

Bouncing Ball

PROC bounce:

LOCAL posX%,posY%,changeX%,changeY%,k%

LOCAL scrx%,scry%,info%(10)

SCREENINFO info%()

scrx%=info%(3) :scry%=info%(4)

posX%=1 :posY%=1

changeX%=1 :changeY%=1

DO

posX%=posX%+changeX%

posY%=posY%+changeY%

IF posX%=1 OR posX%=scrx%

changeX%=-changeX%

REM at edge ball changes direction

BEEP 2,600				REM low beep

ENDIF

IF posY%=1 or posY%=scry%		REM same for y

changeY%=-changeY%

BEEP 2,200				REM high beep

ENDIF

AT posX%,posY% :PRINT “0”;

PAUSE 2					REM Try changing this

AT posX%,posY% :PRINT “ ”;	 	REM removes old ‘0’ character

k%=KEY

UNTIL k%

ENDP

Circles

(Here is an example program for drawing circles or ellipses, filled or unfilled for the Series 5:

PROC draw:

LOCAL d%

DO

dINIT “Draw a circle or an ellipse?”

dBUTTONS “Circle”,%c OR $200,“Ellipse”,%e OR $200,“Cancel”,-27

d%=DIALOG

IF d%=%c

circle:

ELSEIF d%=%e

ellipse:

ENDIF

UNTIL d%=0

ENDP

PROC circle:

LOCAL x&,y&,r&,f%

dINIT “Drawing parameters”

x&=320 :dLONG x&,”Centre x position”,0,639

y&=120 :dLONG y&,”Centre y position”,0,249

r&=20 :dLONG r&,”Radius”,1,320

f%=0 :dCHECKBOX f%,”Filled”

dBUTTONS “Draw”,%d,“Cancel”,-27

IF DIALOG

gAT x&,y&

gCIRCLE r&,f%

GET

gCLS

ENDIF

ENDP

PROC ellipse:

LOCAL x&,y&,hr&,vr&,f%

dINIT “Drawing parameters”

x&=320 :dLONG x&,”Centre x position”,0,639

y&=120 :dLONG y&,”Centre y position”,0,249

hr&=20 :dLONG hr&,”Horizontal Radius”,1,320

vr&=20 :dLONG vr&,”Vertical Radius”,1,320

f%=0 :dCHECKBOX f%,”Filled”

dBUTTONS “Draw”,%d,“Cancel”,-27

IF DIALOG

gAT x&,y&

gELLIPSE hr&,vr&,f%

GET

gCLS

ENDIF

ENDP

(Here are two example programs for drawing circles - the first hollow, the second filled for the Series 3c and Siena:

PROC circle:

LOCAL a%(963),c&,d%,x&,y&,r&,h,y%,y1%,c2%

dINIT “Draw a circle”

x&=240 :dLONG x&,“Centre x pos”,0,479

y&=80 :dLONG y&,“Centre y pos”,0,159

r&=20 :dLONG r&,“Radius”,1,120

h=1 :dFLOAT h,“Relative height”,0,999

IF DIALOG

a%(1)=x&+r& :a%(2)=y& :a%(3)=4*r&

c&=1 :d%=2*r& :y1%=0

WHILE c&<=d%

c2%=c&*2 :y%=-SQR(r&*c2%-c&**2)*h

a%(2+c2%)=-2 :a%(3+c2%)=y%-y1%

y1%=y% :c&=c&+1

ENDWH

c&=1

WHILE c&<=d%

c2%=c&*2 :y%=SQR(r&*c2%-c&**2)*h

a%(2+a%(3)+c2%)=2 :a%(3+a%(3)+c2%)=y%-y1%

y1%=y% :c&=c&+1

ENDWH

gPOLY a%()

ENDIF

ENDP

PROC circlef:

LOCAL c&,d%,x&,y&,r&,h,y%

dINIT “Draw a filled circle”

x&=240 :dLONG x&,“Centre x pos”,0,479

y&=80 :dLONG y&,“Centre y pos”,0,159

r&=20 :dLONG r&,“Radius”,1,120

h=1 :dFLOAT h,“Relative height”,0,999

IF DIALOG

c&=1 :d%=2*r& :gAT x&-r&,y& :gLINEBY 0,0

WHILE c&<=d%

y%=-SQR(r&*c&*2-c&**2)*h

gAT x&-r&+c&,y&-y% :gLINEBY 0,2*y%

c&=c&+1

ENDWH

ENDIF

ENDP

If you use gUPDATE OFF after the IF DIALOG line, and gUPDATE ON before the ENDIF, the procedure will run a little faster. However, all but the smaller circles will be drawn rather jerkily, piece by piece.

(Zooming� XE "zooming" �

This is an example for the Series 3c only. The Series 5 does not have status windows and the Siena does not have large status windows owing to its screen size.

For each of the three types of status window, this program changes the font to implement zooming.

Press Psion-Z to cycle between small, medium and large fonts, and Shift-Psion-Z to cycle in the other direction. Esc changes to the next status window.

As well as changing the font and style for the text window (for PRINT etc.), the FONT command automatically changes the default graphics window size (ID=1) and the text window size to fit exactly in the space left by any status window. (A special feature not used here is that FONT -$3fff,0 just changes the window sizes without changing font).

The procedure dispinfo: uses the command SCREENINFO to display the margin sizes in pixels between the default window and the text window, the text screen size in character units, and the text screen’s character width and line height in pixels.

PROC tzoom:

STATUSWIN OFF				REM no status window

zoom:					REM display with zooming

STATUSWIN ON,2				REM large status window

zoom:

STATUSWIN ON,1				REM and small

zoom:

ENDP

PROC zoom:

LOCAL font%(3),font$(3,20),style%(3)

LOCAL g%,km%,zoom%

zoom%=1

font%(1)=13 :font$(1)=“(Mono 6x6)” :style%(1)=0

font%(2)=4 :font$(2)=“(Mono 8x8)” :style%(2)=0

font%(3)=12 :font$(3)=“(Swiss 16)” :style%(3)=16

g%=%z+$200

DO

IF g%=%z+$200

IF km% AND 2				REM Shift-PSION-Z

zoom%=zoom%-1

IF zoom%<1 :zoom%=3 :ENDIF

ELSE					REM PSION-Z

zoom%=zoom%+1

IF zoom%>3 :zoom%=1 :ENDIF

ENDIF

FONT font%(zoom%),style%(zoom%)

PRINT “Font=”;font%(zoom%),font$(zoom%),

PRINT “Style=”;style%(zoom%)

dispinfo:

PRINT rept$(“1234567890”,15)

gBORDER 0

ENDIF

g%=GET

km%=KMOD

UNTIL g%=27

ENDP

PROC dispinfo:

LOCAL scrInfo%(10)

SCREENINFO scrInfo%()

PRINT “Left margin=”;scrInfo%(1),

AT 17,2 :PRINT “Top margin=”;scrInfo%(2)

PRINT “Screen width=”;scrInfo%(3)

AT 17,3 :PRINT “Screen height=”;scrInfo%(4)

PRINT “Char width=”;scrInfo%(7)

AT 17,4 :PRINT “Line height=”;scrInfo%(8)

ENDP

Animation example

This program requires five bitmap files - one.pic to five.pic. Each of these would differ slightly. They might, for example, be five ‘snapshots’ of a running human figure, each with the legs at a different point in their cycle.

The program copies each bitmap into a window of its own, then makes each window visible in turn, each time slightly further across the screen.

To make bitmap files, first draw the pattern you want with any of the graphics drawing commands. (Use gLINEBY 0,0 to draw single dots.) When the pattern is complete, use gSAVEBIT to make the bitmap file. For advanced animation, you could use a sprite as described in the ‘Using OPXs on the Series 5’ chapter for the Series 5 and the ‘Advanced Topics’ chapter for the Series 3c and Siena..

PROC animate:

LOCAL id%(5),i%,j%,s$(5,10),w%,h%,edge%

REM example width and height

w%=16 :h%=28				

REM screen edge - use 480 for Series 3c and 240 for Siena

edge%=640				

REM need not have “.pic” in the following for Series 3c and Siena

s$(1)=“one.pic” :s$(2)=“two.pic” :s$(3)=“three.pic”

s$(4)=“four.pic” :s$(5)=“five.pic” :j%=1

WHILE j%<6

i%=gLOADBIT(s$(j%))

id%(j%)=gCREATE(0,0,w%,h%,0)

gCOPY i%,0,0,w%,h%,3

gCLOSE i% :j%=j%+1

ENDWH

i%=0 :gORDER 1,9

DO

j%=(i%-5*(i%/5))+1			REM (i% MOD 5)+1

gVISIBLE OFF				REM previous window

gUSE id%(j%)				REM new window

gSETWIN i%,20				REM position it

gORDER id%(j%),1			REM make foreground

gVISIBLE ON				REM make visible

i%=i%+1 :PAUSE 2

UNTIL KEY OR (i%>(edge%-w%))	

ENDP

(Two-voice “ice-cream van” sound

This example is for the Series 3c and Siena only.

The following program plays a rising and falling scale. It uses the amplifier-driven loudspeaker device (with device driver SND:) which allows you to play tunes using two-note chords - ie it has two voices.

This program uses I/O keywords as described in the ‘Advanced Topics’ section. Take care to enter them exactly as shown here.

PROC main:

LOCAL ret%,sndHand%

ret%=IOOPEN(sndHand%,“SND:”,-1) 	REM open the device

IF ret%<0

PRINT “Failed to start”

PRINT err$(err)

GET

ELSE

icecream:(sndHand%)

IOCLOSE(sndHand%)

ENDIF

ENDP

PROC icecream:(sndHand%)

LOCAL notes1%(4),notes2%(14)

LOCAL s1stat%,len1%,len2%

REM define 1st voice

notes1%(1)=1048 :notes1%(2)=96 	REM freq, duration

notes1%(3)=524 :notes1%(4)=48

len1%=2					REM number of notes in voice 1

REM define 2nd voice

notes2%(1)=1048 :notes2%(2)=16

notes2%(3)=1320 :notes2%(4)=16

notes2%(5)=1568 :notes2%(6)=16

notes2%(7)=2092 :notes2%(8)=16

notes2%(9)=1568 :notes2%(10)=16

notes2%(11)=1320 :notes2%(12)=16

notes2%(13)=1048 :notes2%(14)=48

len2%=7					REM number of notes in voice 2

IOC(sndhand%,1,s1stat%,notes1%(),len1%)

REM voice 1 asynchronous

IOW(sndHand%,2,notes2%(),len2%)

REM voice 2 synchronous

IOWAITSTAT s1stat%

ENDP

notes1%() and notes2%() are set up to hold len1% and len2% notes to be played on voice 1 and voice 2 respectively. The number of notes to each voice must not exceed 16384.

Each note is composed of two consecutive integers in the array with the first of each pair giving the frequency in Hz (middle A is 440Hz) and the second giving the note duration in quarter-beats per minute.

�PAGE *\ charformat�100� � REF _Ref388703304 * MERGEFORMAT �10 Example programs�

� REF _Ref388703304 * MERGEFORMAT �10 Example programs� � PAGE �99�

